REVISIÓN: NIRS EN EL ANÁLISIS DE ALIMENTOS PARA LA NUTRICIÓN ANIMAL

ASTRID RIVERA, JOSE MANUEL MALDONADO

Resumen


El análisis de la composición nutricional de forrajes y de los alimentos usados en nutrición animal es relevante en la toma de decisiones dentro del proceso productivo. La espectroscopia por infrarrojo cercano (NIRS) es una metodología que se basa en la quimiométrica, asociando la luz absorbida en una muestra de alimento con la composición química de la misma y con base en ello se desarrollan ecuaciones de predicción por cada componente químico del alimento. La metodología ha sido aplicada en el análisis de forrajes con resultados  confiables para la predicción materia seca, proteína, carbohidratos estructurales, solubles, grasa y en leguminosas para la identificación de factores antinutricionales. Para el desarrollo de modelos de predicción por componente, se deben colectar muestras que abarquen todos los factores de variación de la composición química del alimento. Los modelos de predicción son desarrollados en tres fases: calibración, validación interna y validación externa en las cuales el modelo se evalúa de acuerdo a criterios estadísticos. El NIRS es una metodología que ha sido reconocida como confiable, de bajo costo, rápida y que durante el proceso no genera desechos químicos.


Texto completo:

PDF

Referencias


Alomar, D., & Fuhslocher, R. (1997). Fundamentos De La Espectroscopia De Reflectancia En El Infrarojo Cercano (Nirs) Como Método De Análisis De Forrajes, 5. Retrieved from http://mingaonline.uach.cl/scielo.php?pid=S0304-88021998000100011&script=sci_arttext

Albrecht, K. A., Marten, G. C., Halgerson, J. L., & Wedin, W. F. (1987). Analysis of Cell-Wall Carbohydrates and Starch in Alfalfa, 588, 586–588. ANALYSIS OF FORAGE RESEARCH SAMPLES U T I L I Z I N G A COMBINATION OF WET CHEMISTRY A N D NEAR IN FRARED R E FL ECTANCE SPECTROSCOPY 1. (1987), 271–282.

Andrés, S., Calleja, A., López, S., González, J. S., Rodríguez, P. L., & Giráldez, F. J. (2005). Prediction of gas production kinetic parameters of forages by chemical composition and near infrared reflectance spectroscopy. Animal Feed Science and Technology, 123–124 Pa, 487–499. https://doi.org/10.1016/j.anifeedsci.2005.04.043

Andueza-, D., Picard, F., Jestin, M., Andrieu, J., & Baumont, R. (2011). NIRS prediction of the feed value of temperate forages: efficacy of four calibration strategies. Animal, 5(7), 1002–1013. https://doi.org/10.1017/S1751731110002697

Aufrère, J., Graviou, D., Demarquilly, C., Perez, J. M., & Andrieu, J. (1996). Near infrared reflectance spectroscopy to predict energy value of compound feeds for swine and ruminants. Animal Feed Science and Technology, 62(2–4), 77–90. https://doi.org/http://dx.doi.org/10.1016/S0377-8401(96)00995-9

Brogna, N., Pacchioli, M. T., Immovilli, A., Ruozzi, F., Ward, R., & Formigoni, A. (2009). The use of near-infrared reflectance spectroscopy (NIRS) in the prediction of chemical composition and in vitro neutral detergent fiber (NDF) digestibility of Italian alfalfa hay. Italian Journal of Animal Science, 8(SUPPL. 2), 271–273. https://doi.org/10.4081/ijas.2009.s2.271

Brown, W. F., Piacitelli, C. K., & Mislevy, P. (1987). Near infrared reflectance analysis of nonstructural carbohydrate concentration in tropical grasses. Crop Science, 27, 786–788.

Bruno-Soares, A. M., Murray, I., Paterson, R. M., & Abreu, J. M. F. F. (1998). Use of near infrared reflectance spectroscopy (NIRS) for the prediction of the chemical composition and nutritional attributes of green crop cereals. Animal Feed Science and Technology, 75(1), 15–25. https://doi.org/10.1016/S0377-8401(98)00190-4

Buxton, D. R., & Mertens, D. R. (1991). Errors in forage-quality data predicted by near infrared reflectance spectroscopy. Crop Science, 31(1), 212–218.

Cao, N. (2013). Calibration optimization and efficiency in near infrared spectroscopy, 183. Retrieved from http://lib.dr.iastate.edu/etd/13199/

Cozzolino, D. (2005). Uso De La Espectroscopía De Reflectancia En El Infrarrojo Cercano (Nirs) En El Analisis De Alimentos Para Animales. Agrociencia. VI, 25–32.

Chemistry, F. (n.d.). No Title.

Corson, D. C., Waghorn, G. C., Ulyatt, M. J., & Lee, J. (1999). NIRS : Forage analysis and livestock feeding. Proceedings of New Zealand Grassland Association, 61, 127–132. Retrieved from http://www.grassland.org.nz/publications/nzgrassland_publication_507.pdf

Cougnon, M., Waes, C. Van, Dardenne, P., Baert, J., & Reheul, D. (2013). Grass and Forage Science Comparison of near infrared reflectance spectroscopy calibration strategies for the botanical composition of grass-clover mixtures, (October 2012), 167–175. https://doi.org/10.1111/gfs.12031

Cox, M., Vasconselos, V. R., & Leite, E. R. (2000). Utilizacuo da Tecnica da Espectroscopia e Reflectlincia do Infra- Vermelho Proximo (NIRS) na Determinacuo do Valor Nutricional da Dieta de Ovinos em Caatinga. Revista Científica de Produção Animal, 2(1), 31–40.

Cozzolino, D., & Moron, A. (2004). Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes. Animal Feed Science and Technology, 111(1–4), 161–173. https://doi.org/10.1016/j.anifeedsci.2003.08.001

D’Mello, J. P. F. (2000). Farm animal metabolism and nutrition., 438. https://doi.org/10.1079/9780851993782.0000

De Boever, J. L., Cottyn, B. G., De Brabander, D. L., Vanacker, J. M., & Boucqué, C. V. (1996). Prediction of the feeding value of grass silages by chemical parameters, in vitro digestibility and near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 60(1–2), 103–115. https://doi.org/10.1016/0377-8401(95)00914-0

de Boever, J. L., Cottyn, B. G., Vanacker, J. M., & Boucqué, C. V. (1995). The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle. Animal Feed Science and Technology, 51(3–4), 243–253. https://doi.org/10.1016/0377-8401(94)00695-6

de Sousa, L. C., Gomide, J. L., Milagres, F. R., & de Almeida, D. P. (2011). Desenvolvimento de modelos de calibra????o NIRS para minimiza????o das an??lises de madeiras de eucalyptus spp. Ciencia Florestal, 21(3), 589–597.

De Souza, A. M., & Poppi, R. J. (2012). Experimento didático de quimiometria para análise exploratória de óleos vegetais comestíveis por espectroscopia no infravermelho médio e análise de componentes principais: UM tutorial, parte I. Quimica Nova, 35(1), 223–229. https://doi.org/10.1590/S0100-40422012000100039

Deaville, E. R., Humphries, D. J., & Givens, D. I. (2009). Whole crop cereals. 2. Prediction of apparent digestibility and energy value from in vitro digestion techniques and near infrared reflectance spectroscopy and of chemical composition by near infrared reflectance spectroscopy. Animal Feed Science and Technology, 149(1–2), 114–124. https://doi.org/10.1016/j.anifeedsci.2008.05.008

Decruyenaere, V., Planchon, V., Dardenne, P., & Stilmant, D. (2015). Prediction error and repeatability of near infrared reflectance spectroscopy applied to faeces samples in order to predict voluntary intake and digestibility of forages by ruminants. Animal Feed Science and Technology, 205, 49–59. https://doi.org/10.1016/j.anifeedsci.2015.04.011

Fontaneli, R. S., Durr, J. W., Scheffer-Basso, S. M., Haubert, F., & Bortolini, F. (2002). Validação do Método da Reflectância no Infravermelho Proximal para Análise de Silagem de Milho. Revista Brasileira de Zootecnia, 31, 594–598. https://doi.org/10.1590/S1516-35982002000300008

Fontaneli, R. S., Scheffer-Basso, S. M., Dürr, J. W., Appelt, J. V., Bortolini, F., & Haubert, F. A. (2004). Predição da composição química de bermudas (Cynodon spp.) pela espectroscopia de reflectância no infravermelho proximal. Revista Brasileira de Zootecnia, 33(4), 838–842.

Honorato, F. A., Neto, B. D. B., Martins, M. N., Galvão, R. K. H., & Pimentel, M. F. (2007). Transferência de calibração em métodos multivariados. Quimica Nova, 30(5), 1301–1312. https://doi.org/10.1590/S0100-40422007000500044

Inácio, M. R. C., De Lima, K. M. G., Lopes, V. G., Pessoa, J. D. C., & De Almeida Teixeira, G. H. (2013). Total anthocyanin content determination in intact a??a?? (Euterpe oleracea Mart.) and palmitero-ju??ara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration. Food Chemistry, 136(3–4), 1160–1164. https://doi.org/10.1016/j.foodchem.2012.09.046

Dryden, G. M. (2003). Near Infrared Reflectance Spectroscopy: Applications in Deer Nutrition 47 341, (July).

Givens, D. I., DeBoever, J. L., & Deaville, E. R. (1997). The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans 162 162. Nutrition Research Reviews, 10, 83–114. Retrieved from wos: A1997YK89600004

Herrero, M., Murray, I., Fawcett, R. H., & Dent, J. B. (1996). Prediction of the in vitro gas production and chemical composition of kikuyu grass by near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 60, 51–67. https://doi.org/10.1016/0377-8401(95)00924-8

Jiménez Paola Andrea, T. (2007). Identificación de harinas de yuca (Manihot esculenta crantz) con alto contenido proteico mediante espectroscopia de infrarrojo cercano (NIRS). Producción Animal Tropical, MAESTRIA E, 71.

Lascano, C. E. (2002). Caracterización de las pasturas para maximizar producción animal Characterization of pastures to maximize animal production Recibido Marzo 15, 2001Aceptado Enero 10 , 2002 Conferencia invitada presentada en la XVI Reunión de la Asociación Latinoameric. Archivos Latinoamericanos de Producción Animal, 10, 126–132.

Pasos sugeridos para la calibración NIRS. (Adaptado de Dardenne en: http://www.feedipedia.org/content/nirs-feed-and-soil-analysis-developing-countries Acceso: marzo 5 de 2015).

Radiación infrarroja. (a) Reflexión; (b) reflexión difusa; (c) absorción; (d) transmisión; (e) difracción; (f) difusión (Givens et al., 1997; En: http://www.engormix.com/MA-balanceados/formulacion/articulos/espectroscopia- infrarrojo-cercano-nirs-t577/800-p0.htm, Acceso:marzo de 2015).

Sandoval-mej, L. A., & Bueso-ucl, F. J. (2008). Predicción Nutricional Para Pastos Tropicales Por. Agronomía Mesoamericana, 19(2), 221–225. https://doi.org/1021-7444

Vásquez, D. R., Abadía, B., & Arreaza, L. C. (2004). Aplicación de la Espectroscopía de Reflectancia en el Infrarrojo Cercano (NIRS) para la caracterización nutricional del pasto Guinea y del grano de maíz. Revista Corpoica, 5(Octubre), 49–55.

Landau, S., Glasser, T., & Dvash, L. (2006). Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: A review. Small Ruminant Research, 61(1), 1–11. https://doi.org/10.1016/j.smallrumres.2004.12.012

Meeting, J. A., & City, S. L. (2016). 2016 Jam, 94.

Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024

Nordheim, H., Volden, H., Fystro, G., & Lunnan, T. (2007). Prediction of in situ degradation characteristics of neutral detergent fibre (aNDF) in temperate grasses and red clover using near-infrared reflectance spectroscopy (NIRS). Animal Feed Science and Technology, 139(1–2), 92–108. https://doi.org/10.1016/j.anifeedsci.2006.11.024

Ohlsson, C., Houmøller, L. P., Weisbjerg, M. R., Lund, P., & Hvelplund, T. (2007). Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy. Journal of Animal Physiology and Animal Nutrition, 91(11–12), 498–507. https://doi.org/10.1111/j.1439-0396.2007.00683.x

Pasquini, C. (2003). Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society, 14(2), 198–219. https://doi.org/10.1590/S0103-50532003000200006

Pojić, M., Mastilović, J., & Majcen, N. (2012). Robustness of the near infrared spectroscopy method determined using univariate and multivariate approach. Food Chemistry, 134(3), 1699–1705. https://doi.org/10.1016/j.foodchem.2012.03.104

Prasad, M. N. V. (1995). Analysis of Leucaena mimosine, Acacia tannins and total phenols by near infrared reflectance spectroscopy. Biomass and Bioenergy, 8(3), 203–205. https://doi.org/10.1016/0961-9534(95)00010-5

Rodriguez-Saona, L. E., & Allendorf, M. E. (2011). Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annual Review of Food Science and Technology, 2(1), 467–483. https://doi.org/10.1146/annurev-food-022510-133750

Selmet, C. U. M. R., & Bimont, P. (2014). The use of Near-Infrared Spectrometry ( NIRS ) to predict the soil fertility in South Africa, 2013–2014.

Stuth, J., Jama, A., & Tolleson, D. (2003). Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crops Research, 84(1–2), 45–56. https://doi.org/10.1016/S0378-4290(03)00140-0

Surault, F., Briand, M., Veron, R., & Huyghe, C. (2005). NIRS calibration equations to determine species contribution in grassland swards, 11, 2004–2006.

Volkers, K. C., Wachendorf, M., Loges, R., Jovanovic, N. J., & Taube, F. (2003). Prediction of the quality of forage maize by near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 109(1–4), 183–194. https://doi.org/10.1016/S0377-8401(03)00173-1

Wheeler, R. A., Chaney, W. R., Johnson, K. D., & Butler, L. G. (n.d.). Leucaena forage analysis using near infrared reflectance spectroscopy, 64(3 17).

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Revista Ingenio Universidad Francisco de Paula Santander Ocaña