CALIDAD DE LA CARNE Y SU ASOCIACIÓN CON LAS FIBRAS MUSCULARES

Juliana Andrea Cuetia Londoño, Cruz Elena Enriquez Valencia, César Urón Castro

Resumen


La presente revisión hace una exploración profunda y actualizada sobre el tipo de fibra muscular y su asociación con las características de calidad de la carne en bovinos. Se ha demostrado a través de los años, que las características consideradas como calidad de la carne, especialmente la terneza, están asociadas a factores específicos del músculo como contenido de grasa, colágeno, sistemas de actividad proteolítica y tipo de fibra muscular. Cada tipo de fibra presenta distintas características funcionales, estructurales, metabólicas, químicas y morfológicas, las cuales pueden alterar los procesos bioquímicos post-mortem y consecuentemente afectar los mecanismos de terneza de la carne. En la actualidad, los últimos estudios biotecnológicos que incluyen proteoma e interactoma asociados a la bioinformática confirman este hecho, la terneza de la carne depende de la raza y las propiedades contráctiles y metabólicas específicas de cada músculo, propiedades las cuales, están incorporadas de acuerdo al tipo de fibra muscular.

Texto completo:

PDF

Referencias


Bottinelli, R. (2001). Functional heterogeneity of mammalian single muscle fibres: do myosin isoforms tell the whole story. Pflugers Arch, 443, 6 – 17.

Bowker, B. C., Botrel, C., Swartz, D. R., Grant, a. L., & Gerrard, D. E. (2004). Influence of myosin heavy chain isoform expression and postmortem metabolism on the ATPase activity of muscle fibers. Meat Science, 68(4), 587–594. http://doi.org/10.1016/j.meatsci.2004.05.010

Bowker, B. C., Grant, a. L., Swartz, D. R., & Gerrard, D. E. (2004).

Myosin heavy chain isoforms influence myofibrillar ATPase activity under simulated postmortem pH, calcium, and temperature conditions. Meat Science, 67(1), 139–147. http://doi.org/10.1016/j.meatsci.2003.09.016

Cerón-Muñoz, M. F., Montoya Atehortua, A. E., Trujillo Bravo, E. R., Ramírez Toro, E., & Monsalve Fonnegra, Z. I. (2009). Marcadores del GEN Leptina en bovinos cruzados con Angus, cebú, romosinuano y blanco orejinegro. Revista Científica, 19(4), 371-381. Recuperado en 07 de diciembre de 2016, de http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0798-22592009000400009&lng=es&tlng=es.

Choi, Y. M., & Kim, B. C. (2009). Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Science, 122(2-3), 105–118. http://doi.org/10.1016/j.livsci.2008.08.015

Choi, Y. M., Ryu, Y. C., & Kim, B. C. (2006). EFFECT OF MYOSIN HEAVY CHAIN ISOFORMS ON MUSCLE FIBER CHARACTERISTICS AND MEAT QUALITY IN PORCINE LONGISSIMUS MUSCLE. Journal of Muscle Foods, 17, 413–427. http://doi.org/10.1111/j.1745-4573.2006.00060.x

Chriki, S., Gardner, G. E., Jurie, C., Picard, B., Micol, D., Brun, J.-P., … Hocquette, J.-F. (2012). Cluster analysis application identifies muscle characteristics of importance for beef tenderness. BMC Biochemistry, 13(1), 29. http://doi.org/10.1186/1471-2091-13-29

Chriki, S., Renand, G., Picard, B., Micol, D., Journaux, L., & Hocquette, J. F. (2013). Meta-analysis of the relationships between beef tenderness and muscle characteristics. Livestock Science, 155(2-3), 424–434. http://doi.org/10.1016/j.livsci.2013.04.009

Crouse, J. D., Koohmaraie, M., & Seideman, S. D. (1991). The Relationship of Muscle Fibre Size to Tenderness of Beef. Meat Science, 30, 295–302.

Cuetia Londoño, J. A., Alvarez Franco, L. A., & Muñoz Florez, J. E. (2012). Polimorfismo de los genes calpaína, calpastatina y leptina en diez razas bovinas criollas mediante siete marcadores de polimorfismos de nucleótido simple (SNPs). Obtenido de Tesis Maestría. Universidad Nacional de Colombia sede Palmira.: http://www.bdigital.unal.edu.co/10255/1/7409502.2012.pdf

Enriquez-valencia, C. E., Malheiros, J. M., Ivan, V.-J., Dal-Pai-Silva, M., & Chardulo, L. A. L. (2016). Cadeia pesada da miosina no crescimento e a maciez da carne de bovinos Nelore. Ciência & Tecnologia: Fatec-JB, Jaboticabal, 8(1), 2–6.

Fry, a C., Allemeier, C. a, & Staron, R. S. (1994). Correlation between percentage fiber type area and myosin heavy chain content in human skeletal muscle. European Journal of Applied Physiology, 68, 246 – 251.

Gorza, L. (1990). Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society, 38(2), 257–265. http://doi.org/10.1177/38.2.2137154

Guillemin, N., Bonnet, M., Jurie, C., & Picard, B. (2011). Functional analysis of beef tenderness. Journal of Proteomics, 75(2), 352–365. http://doi.org/10.1016/j.jprot.2011.07.026

Guillemin, N. P., Jurie, C., Renand, G., Hocquette, J.-F., Micol, D., Lepetit, J., & Picard, B. (2012). Different phenotypic and proteomic markers explain variability of beef tenderness across muscles. International Journal of Biology, 4(2), 26–38. http://doi.org/10.5539/ijb.v4n2p26

Hocquette, J. F., Gondret, F., Baéza, E., Médale, F., Jurie, C., & Pethick, D. W. (2010). Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal, 4(02), 303. http://doi.org/10.1017/S1751731109991091

Hocquette, J.-F., Lehnert, S., Barendse, W., Cassar-Malek, I., & Picard, B. (2007). Recent advances in cattle functional genomics and their application to beef quality. Animal, 1(01), 159. http://doi.org/10.1017/S1751731107658042

Huff Lonergan, E., Zhang, W., & Lonergan, S. M. (2010). Biochemistry of postmortem muscle - Lessons on mechanisms of meat tenderization. Meat Science, 86(1), 184–195. http://doi.org/10.1016/j.meatsci.2010.05.004

Hwang, Y. H., Kim, G. D., Jeong, J. Y., Hur, S. J., & Joo, S. T. (2010). The relationship between muscle fiber characteristics and meat quality traits of highly marbled Hanwoo (Korean native cattle) steers. Meat Science, 86(2), 456–461. http://doi.org/10.1016/j.meatsci.2010.05.034

Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828–836. http://doi.org/10.1016/j.meatsci.2013.04.044

Karlsson, A. H., Klont, R. E., & Fernandez, X. (1999). Skeletal muscle fibres as factors for pork quality. Livestock Production Science, 60(2-3), 255–269. http://doi.org/10.1016/S0301-6226(99)00098-6

Killinger, K. M., Calkins, C. R., Umberger, W. J., Feuz, D. M., & Eskridge, K. M. (2004). Consumer visual preference and value for beef steaks differing in marbling level and color. Journal of Animal Science, 82(11), 3288–3293.

Klont, R. E., Brocks, L., & Eikelenboom, G. (1998). Muscle fibre type and meat quality. Meat Science, 49S1(98), S219–29. http://doi.org/10.1016/s0309-1740(98)00086-2

Koohmaraie, M. (1996). Biochemical factors regulating the toughening and tenderization processes of meat. Meat Science. Vol. 43. Pag. 193.

Koohmaraie M., Kent M. P., Shackelford S. D., Veisethe., Wheeler T. L. (2002). Meat tenderness and muscle growth: is there any relationship?. Meat Science. Vol. 62. Pag. 345–352

Lee, S. H., Joo, S. T., & Ryu, Y. C. (2010). Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Science, 86(1), 166–170. http://doi.org/10.1016/j.meatsci.2010.04.040

Lefaucheur, L. (2006). Myofibre typing and its relationships to growth performance and meat quality. Archives Tierzucht Dummerstorf, 49, 4–17.

Lefaucheur, L. (2010). A second look into fibre typing - Relation to meat quality. Meat Science, 84(2), 257–270. http://doi.org/10.1016/j.meatsci.2009.05.004

Lefaucheur, L., & Gerrard, D. (2000). Muscle fiber plasticity in farm mammals. J. Anim Sci., 77(E-Suppl), 1–19. Retrieved from http://jas.fass.org/cgi/content/abstract/77/E-Suppl/1-a

Maltin, C. A., Sinclair, K. D., Warriss, P. D., Grant, C. M., Porter, A. D., Delday, M. I., & Warkup, C. (1998). The effects of age at slaughter, genotype and finishing system on the biochemical properties, muscle fibre type characteristics and eating quality of bull beef from suckled calves. Animal Science, 66(2), 341–348.

Maltin, C. a., Delday, M. I., Sinclair, K. D., Steven, J., & Sneddon, a. a. (2001). Impact of manipulations of myogenesis in utero on the performance of adult skeletal muscle. Reproduction, 122(3), 359–374. http://doi.org/10.1530/reprod/122.3.359

Martínez Correal, G. (2010). Plan nacional de acción para la conservación, mejoramiento y utilización sostenible de los recursos genéticos animales de colombia. Obtenido de: https://coin.fao.org/coin-static/cms/media/12/13346079520090/pna02-arreglado.pdf

Martìnez R. A., Quiceno J., Gallego J. L., Mateus H., Rodriguez O., Medina P., Ballesteros H. (2012). Desempeño de toretes de las razas criollas Blanco Orejinegro y Romosinuano en prueba de crecimiento en pastoreo. Revista Colombiana Ciencias Pecuarias. Vol. 25. Pag.36-45

Martínez, R. (2013). Nuevos enfoques de conservación, caracterización y mejoramiento de razas bovinas criollas colombianas. En R. Campos Gaona, & C. V. Durán, Consideraciones sobre el mejoramiento genético y factores asociados en bovinos criollos colombianos y grupos multirraciales (págs. 1 - 19). Palmira: Universidad Nacional de Colombia, sede Palmira - Facultad de Ciencias Agropecuarias - Departamento de Ciencia Animal.

Montoya A. E., Cerón M. F., Trujillo E., Ramirez E. J. y Angel P. A. 2009. Frecuencia de los marcadores del gen leptina en razas bovinas criollas y colombianas: I. Romosinuano, chino santandereano, sanmartinero y velásquez. Rev. Cient. (Maracaibo) v.19 n.1 Maracaibo.

Pacheco, P. S., Restle, J., Henrique, J., Brondani, I. L., Pascoal, L. L., Celestino, D., … Freitas, A. K. De. (2005). Composição Física da Carcaça e Qualidade da Carne de Novilhos Jovens e Superjovens Carcass Physical Composition and Meat Quality of Steers and Young Steers of Different Genetic Groups O experimento foi conduzido no Setor de, 1691–1703.

Pereira, P. M. R. C., Pinto, M. F., de Abreu, U. G. P., & de Lara, J. a F. (2009). Caracteristicas de carcaça e qualidade de carne de novilhos superprecoces de três grupos genéticos. Pesquisa Agropecuaria Brasileira, 44(11), 1520–1527. http://doi.org/10.1590/S0100-204X2009001100021

Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. a, & Stempel, K. E. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry, 11(14), 2627–2633. http://doi.org/10.1021/bi00764a013

Picard, B., Gagaoua, M., Micol, D., Cassar-Malek, I., Hocquette, J. F., & Terlouw, C. E. M. (2014). Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle. Journal of Agricultural and Food Chemistry, 62(40), 9808–9818. http://doi.org/10.1021/jf501528s

Picard, B., Lefaucheur, L., Berri, C., & Duclos, M. (2002). Muscle fibre ontogenesis in farm animal species. Reproduction, Nutrition, Development, 42, 415–431. http://doi.org/10.1051/rnd:2002035

Renand, G., Picard, B., Touraille, C., Berge, P., & Lepetit, J. (2001). Relationships between muscle characteristics and meat quality traits of young Charolais bulls. Meat Science, 59(1), 49–60. http://doi.org/10.1016/S0309-1740(01)00051-1

Renerre, M. (1990). Review: Factors involved in the discoloration of beef meat. International Journal of Food Science and Technology, 25, 613–630.

Rivero, J. L., Talmadge, R. J., & Edgerton, V. R. (1997). A sensitive electrophoretic method for the quantification of myosin heavy chain isoforms in horse skeletal muscle: histochemical and immunocytochemical verifications. Electrophoresis, 18(11), 1967–1972.

Saccà, E., Corazzin, M., Pizzutti, N., Lippe, G., & Piasentier, E. (2015). Early post mortem expression of genes related to tenderization in two Italian Simmental young bulls’ skeletal muscles differing in contractile type. Animal Science Journal, 1 – 8. http://doi.org/10.1111/asj.12386

Schiaffino, S., Gorza, L., Sartore, S., Saggin, L., Ausoni, S., Vianello, M.,

Lømo, T. (1989). Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 10(3), 197–205.

Schiaffino, S., & Reggiani, C. (2011). Fiber Types in Mammalian Skeletal Muscles. Physiological Reviews, 91(4), 1447–1531. http://doi.org/10.1152/physrev.00031.2010

Serrano, a L., Pérez, M., Lucía, A., Chicharro, J. L., Quiroz-Rothe, E., & Rivero, J. L. (2001). Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level. Journal of Anatomy, 199(3), 329–337.

Staron, R. S., Hagerman, F. C., Hikida, R. S., Murray, T. F., Hostler, D. P., Crill, M. T., … Toma, K. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society, 48(5), 623–629. http://doi.org/10.1097/00005768-199905001-01645

Tait, R. G., Wilson, D. E., & Rouse, G. H. (2005). Prediction of retail product and trimmable fat yields from the four primal cuts in beef cattle using ultrasound or carcass data. Journal of Animal Science, 83(6), 1353–1360.

Termin, a, Staron, R. S., & Pette, D. (1989). Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry, 92(6), 453–457. http://doi.org/10.1007/BF00524756

Troy, D. J., & Kerry, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Science, 86(1), 214–226. http://doi.org/10.1016/j.meatsci.2010.05.009

Vásquez, R., Martínez, R., Ballesteros, H., Grajales, H., Abuabara, Y. & Pérez, J. E. (2006). El ganado Romosinuano en la producción de carne en Colombia. Bogotá: Corporación Colombiana de Investigación Agropecuaria – CORPOICA –.

Vásquez R. E., Ballesteros H. H., Muñoz C. A. 2007. Factores asociados con la calidad de la carne. I parte: la terneza de la carne bovina en 40 empresas ganaderas de la región Caribe y el Magdalena Medio. Revista Corpoica – Ciencia y Tecnología Agropecuaria. Vol. 8. Pag. 60-65.

Verbeke, W., Van Wezemael, L., de Barcellos, M. D., Kügler, J. O., Hocquette, J. F., Ueland, Ø., & Grunert, K. G. (2010). European beef consumers’ interest in a beef eating-quality guarantee. Insights from a qualitative study in four EU countries. Appetite, 54(2), 289–296. http://doi.org/10.1016/j.appet.2009.11.013

Wegner, J., Albrecht, E., & Fiedler, I. (2000). Growth-and breed-related changes of muscle fiber characteristics in cattle. Journal of Animal Science, 78(6), 1485–1496. Retrieved from http://jas.fass.org/content/78/6/1485.short

Zamora, F., Debiton, E., Lepetit, J., Lebert, a., Dransfield, E., & Ouali, a. (1996). Predicting variability of ageing and toughness in beef M. Longissimus lumborum et thoracis. Meat Science, 43(3-4), 321–333. http://doi.org/10.1016/S0309-1740(96)00020-4

Zhang, M., Liu, Y., Fu, C., Wang, J., Chen, S., Yao, J., & Lai, S. (2014). Expression of MyHC genes, composition of muscle fiber type and their association with intramuscular fat, tenderness in skeletal muscle of Simmental hybrids. Molecular Biology Reports, 41(2), 833–840. http://doi.org/10.1007/s11033-013-2923-6

Zhao, C., Zan, L., Wang, Y., Scott Updike, M., Liu, G., Bequette, B. J., … Song, J. (2014). Functional proteomic and interactome analysis of proteins associated with beef tenderness in Angus cattle. Livestock Science, 161(1), 201–209. http://doi.org/10.1016/j.livsci.2013.11.030


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Revista Ingenio Universidad Francisco de Paula Santander Ocaña